News Update | |
Scientific Systems develops non-GPS Navigation for GPS-denied environments
Scientific Systems, an industry leader in advanced artificial intelligence for defense applications, has announced that it is continuing development of ImageNav™, the company’s non-GPS, image-based, precision navigation software. The company has recently extended and demonstrated its image-based solution during flight operations ranging from 25,000 feet down to 200 feet. ImageNav has been developed for over a decade with funding totaling more than $45 million.
For many air vehicle flights, the military relies on the Global Positioning System (GPS) for navigation, risking exposure to electronic jamming in contested environments. The BBC has reported that Russia significantly upgraded their electronic-warfare capability and has disabled sophisticated US-provided missiles in Ukraine by scrambling their GPS coordinates.
ImageNav provides accurate navigation, without GPS, for a range of systems, including weapons, aircraft, and uncrewed aircraft systems (UAS).
ImageNav software computes both absolute and relative navigation position updates by fusing the output of three different algorithms: stereo terrain correlation, image-based feature matching, and feature-based velocity estimation. Stereo terrain correlation collects a series of overlapping images from a flight path using an onboard electro-optical (EO) or infrared (IR) digital camera. Absolute position fixes are computed by correlating stereo elevation models from the captured imagery with stored terrain references to determine the precise geo-location. Image-based feature matching matches image features in captured imagery with stored image references. Lastly, feature-based velocity estimation tracks image features from frame to frame to constrain inertial navigation drift between position updates. ImageNav uses all three of these algorithms, running in parallel, to produce a robust, GPS-like position that is immune to jamming.
Leave your response!